Human Pose Estimation from RGB Input Using Synthetic Training Data

نویسندگان

  • Oscar M. Danielsson
  • Omid Aghazadeh
چکیده

We address the problem of estimating the pose of humans using RGB image input. More specifically, we are using a random forest classifier to classify pixels into joint-based body part categories, much similar to the famous Kinect pose estimator [11], [12]. However, we are using pure RGB input, i.e. no depth. Since the random forest requires a large number of training examples, we are using computer graphics generated, synthetic training data. In addition, we assume that we have access to a large number of real images with bounding box labels, extracted for example by a pedestrian detector or a tracking system. We propose a new objective function for random forest training that uses the weakly labeled data from the target domain to encourage the learner to select features that generalize from the synthetic source domain to the real target domain. We demonstrate on a publicly available dataset [6] that the proposed objective function yields a classifier that significantly outperforms a baseline classifier trained using the standard entropy objective [10].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3-D Hand Pose Estimation from Kinect's Point Cloud Using Appearance Matching

In this work we present an appearance-based approach for pose estimation of a human hand using the point clouds provided by the low-cost Microsoft Kinect sensor. We have considered both the free-hand case, in which the hand is isolated from the surrounding environment, and the hand-object case, in which the different types of interactions are classified. The hand-object case is clearly the most...

متن کامل

Unconstrained Gaze Estimation Using Random Forest Regression Voting

In this paper we address the problem of automatic gaze estimation using a depth sensor under unconstrained head pose motion and large user-sensor distances. To achieve robustness, we formulate this problem as a regression problem. To solve the task in hand, we propose to use a regression forest according to their high ability of generalization by handling large training set. We train our trees ...

متن کامل

3D Hand Pose Detection in Egocentric RGB-D Images

We focus on the task of everyday hand pose estimation from egocentric viewpoints. For this task, we show that depth sensors are particularly informative for extracting near-field interactions of the camera wearer with his/her environment. Despite the recent advances in full-body pose estimation using Kinect-like sensors, reliable monocular hand pose estimation in RGB-D images is still an unsolv...

متن کامل

Learning Human Pose Models from Synthesized Data for Robust RGB-D Action Recognition

We propose Human Pose Models that represent RGB and depth images of human poses independent of clothing textures, backgrounds, lighting conditions, body shapes and camera viewpoints. Learning such universal models requires training images where all factors are varied for every human pose. Capturing such data is prohibitively expensive. Therefore, we develop a framework for synthesizing the trai...

متن کامل

The Best of Both Worlds: Learning Geometry-based 6D Object Pose Estimation

We address the task of estimating the 6D pose of known rigid objects, from RGB and RGB-D input images, in scenarios where the objects are heavily occluded. Our main contribution is a new modular processing pipeline. The first module localizes all known objects in the image via an existing instance segmentation network. The next module densely regresses the object surface positions in its local ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1405.1213  شماره 

صفحات  -

تاریخ انتشار 2014